
Spiking Neural Network for Autonomous Drone Control
Team AirBrane: Tyler Nitzsche, Jihun Kim, Jonathan Skeen, Seoyoung An

Advisor: Catherine D. Schuman
Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA

● Research and development efforts have long been 
focused on autonomous drones, yet their energy 
consumption during flight remains a formidable challenge. 
Due to weight and size considerations, autonomous 
drones are limited in their battery capacity. Hence, all 
means of reducing energy consumption are important.

● A spiking neural network (SNN) is a type of neural 
network that more closely resembles biological neural 
systems through the use of neurons and simulated spikes 
along synapses. Compared to other neural networks, SNN 
has a significant advantage in energy efficiency, making 
them ideal for operating devices with limited battery 
capacity.

Acknowledgements:
We would like to show our appreciation to our advisor, Dr. Catherine Schuman, for her insightful 
guidance and advice.
We also express our appreciation to TENNLab for providing us with the resources and opportunities to 
pursue our senior design project. 
Lastly, we would like to thank the members of the last senior design team for their insight and 
assistance.

References:
1. Catherine D Schuman, Shruti R Kulkarni, Maryam Parsa, J Parker Mitchell, Prasanna Date, and Bill Kay. 

Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science, 
2(1):10–19, 2022.

2. C. D. Schuman, J. P. Mitchell, R. M. Patton, T. E. Potok, and J. S. Plank. Evolutionary optimization for 
neuromorphic systems. In NICE: Neuro-Inspired Computational Elements Workshop, 2020.

3. Bitcraze. Crazyflie 2.1.
4. Simon D. Levy. Multicoptersim, 2023.
5. Simon D. Levy. gym-copter, 2023.

● To design SNN architecture, we used the evolutionary 
algorithm EONS (Evolutionary Optimization for 
Neuromorphic Systems) from TENNLab to evolve a SNN 
through a process similar to natural selection [2].

● We utilized the simulator created by the previous senior 
design team to assess the network's proficiency to fly the 
drone.

○ MuJoCo connected into TENNLab’s C++ framework

● Using EONS, we trained SNNs and tested trained SNNs on 
the simulator. Training is repeated until the drone performs 
well on the virtual environment.

○ Performance goal: a drone flies for a fixed height, hovers 
and stays for awhile, then lands without crashing in the 
simulation

● Our primary focus throughout our workflow and implementation revolved around 
refining the reward structure of the network which is broken into two parts that 
affect the reward given to the network:

○ Reward
■ Checked every timestep; run efficiently

■ Had largest impact on overall performance of the drone

○ Final_Reward
■ Checked 100 times over the training period; a bit slower

■ Played less significant role

● Discourage horizontal displacement using function that is not Big-O 
efficient

● Our final version of code checks if the drone is in a designated ‘box’ off of the 
ground and rewards based on how stable the drone is. Once drone lands, it was 
penalized for being in the box to prevent ‘hopping’ behavior.

● Testing was an iteration of trial-and-error approach. We adjusted the reward 
function, ran it on the different seeds, and check which model had the best drone 
performance on the simulator.

● Our drone successfully flies, hovers, and lands in the 
simulator with seed=2.

Autonomous Drone and SNN

Conclusion
● Our drone performed well and did an excellent job of hovering 

and landing safely.

● For the future work, we want to implement and test it to the 
physical crazyflie drone hardware.

● Also, we will improve performance of the drone and try 
performing different tasks not only hovering but also going to 
the designed destination and coming back. 

● Visualized flight 
path of the drone

○ For this network, 
drone reached 
3.12 meters then 
landed

Technical Approach

Implementation Result

● Created network with 
the best performance 
using TENNLab 
network visualizer

● Input layers are directly 
connected to the output 
layers

○ No intermediate 
layers


